Similarity invariant real linear subspaces and similarity preserving additive maps

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Similarity-Preserving Binary Signature for Linear Subspaces

Linear subspace is an important representation for many kinds of real-world data in computer vision and pattern recognition, e.g. faces, motion videos, speeches. In this paper, first we define pairwise angular similarity and angular distance for linear subspaces. The angular distance satisfies non-negativity, identity of indiscernibles, symmetry and triangle inequality, and thus it is a metric....

متن کامل

Real Linear Maps Preserving Some Complex Subspaces

We find configurations of subspaces of a complex vector space such that any real linear map with sufficiently high rank that maps the subspaces into complex subspaces of the same dimension must be complex linear or antilinear.

متن کامل

Translation Invariant Approach for Measuring Similarity of Signals

In many signal processing applications, an appropriate measure to compare two signals plays a fundamental role in both implementing the algorithm and evaluating its performance. Several techniques have been introduced in literature as similarity measures. However, the existing measures are often either impractical for some applications or they have unsatisfactory results in some other applicati...

متن کامل

Linear Maps Preserving the Isomorphism Class of Lattices of Invariant Subspaces

Let V be an n-dimensional complex linear space and L(V) the algebra of all linear transformations on V . We prove that every linear map on L(V), which maps every operator into an operator with isomorphic lattice of invariant subspaces, is an inner automorphism or an inner antiautomorphism multiplied by a nonzero constant and additively perturbed by a scalar type operator. The same result holds ...

متن کامل

Linear maps preserving or strongly preserving majorization on matrices

For $A,Bin M_{nm},$ we say that $A$ is left matrix majorized (resp. left matrix submajorized) by $B$ and write $Aprec_{ell}B$ (resp. $Aprec_{ell s}B$), if $A=RB$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $R.$ Moreover, we define the relation $sim_{ell s} $ on $M_{nm}$ as follows: $Asim_{ell s} B$ if $Aprec_{ell s} Bprec_{ell s} A.$ This paper characterizes all linear p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2004

ISSN: 0024-3795

DOI: 10.1016/j.laa.2003.08.003